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A theorem of Ingham refining one of Wiener 181 states that if

is a power series with radius of convergence I.

if k"* k".

k I < k 2 < "', being a sequence satisfying the inequality

( I )

(2)

(3 )

and f(e ifl
) = limr~1 +f(re ifl

) exists a.e.• then there is a positive constant
K = K(A) such that

.~ .21'[

00 > j [f(e il )1 2 dt;;::' K(A) f If(e il
)[2 dt

'f ' (I

(4 )

for every interval I of length;;::' 2n/A.
One could ask whether, in (4), the power 2 can be replaced by q's"* 2,

This problem was solved for q > 2 in the negative in 1962 by Erdos and
Renyi [I] (cf. Zygmund [9, Vol. I, p. 380]).

Erdos and Renyi proved that for any q > 2 there is a function j(z) such
that even a condition stronger than (3), namely,

is satisfied; furthermore,

(n -> 00) (3' )

15 < t < 1 - 0 (0 < 15 < ~);

I

(5 )

00219045/83 $3.00
Copyright '"£: 1983 by Academic Press. Inc

Atl rights of reprodu~tion in any form reserved,



2

but

P. SZUSZ

(6 )

The proof of this theorem is based on probability theory and gives no
example of a function having the properties (2), (3'), (5), and (6). An
example of such a function was essentially given by Turan 171. However, his
construction works only for q > 6; further, property (5) is replaced by the
weaker property

(5' )

Later Knapowski 141 modified Turan's construction and replaced q > 6 by
q > 3.

In Section 2 of the present paper I construct a function satisfying (2). (3'),
(5). and (6) for any given q> 2.

1. LEMMAS

LEMMA 1. Let t

0< t < I,

let k I and k: be natural numbers satisfving

( 1. I )

1 1
-<t< 1--,
k, k,

(1.2 )

and let

( 1.3)

(1.4 )

where II y II denotes the distance of the real number y from a nearest integer.
Then if k: > k I' we have

k: > 5 + v24
k I

so that (1.3) and (1.4) cannot happen simultaneously too frequently.

(1.5 )
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Proof Equations (1.2)-(1.4) yield, with some integers d l and d 2 ,

Set

Then (1.6) implies

~<_l_(l+~),
C 10 c

I.e.,

C
2

- 10c + I > 0,

3

(1.6 )

which proves Lemma I.

The following lemmas are from the theory of continued fractions. Let t be
an irrational number, °< t < I, and let [0; a 1,••. 1 be its continued fraction
expansion. I use Perron's 16\ notation A 0 = 0, B 0 = I; for n = I, 2, ... ,

An IT= 10;al,···,an
n

(n = Ian; an I I"" I;

and for n = 0, I, 2, ... ,

(A" > O,B n > 0, (An' Bn)= I),

(-I )n
Dn = Bnt -An =---,-,----

Bn(n+ 1+ Bn
(B_ 1 = 0). (1.7)

LEMMA 2 (Ostrowski [51). Any integer m? 0 has a unique represen
tation

n

m= '\' ck+IBk,
k~O

where the ck + I are integers satisfying

(1.8 )
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The proof is by induction.

LEMMA 3. If m ). 1 is an integer, then either

Ilmtll > Iltll

or

(1.9 )

Proof It suffices to show that either

or

which, in turn. is an easy consequence of (1. 7) and the well·known formulae
of the theory of continued fractions

and

I
D",j=--r- D,,;

l.:,n +- 2:

see Perron 16. pp. 4 and 361.

( 1.10)

( 1. I 1)

LEMMA 4. Let N be a natural number, let E be a given positive number.
and let t be a given positive irrational number with the continued fraction
expansion 10; a j • "I. Let I be the largest k with

(1.l2)

that is,



POWER SERIES WITH GAPS

and let m be a natural number satisfying

If I:) 2, then m has the form

In other words, in the representation (1.8),

5

(1.13 )

(1.14 )

Proof Let I <I' < I and set m' = c,B,_, + .... We may assume

Ilm'tll <Iltll· By (1.9) we have

Ilm'tll=lc,.D{_, + ···1
> Ic{.D" 1 + (a,,! ,-I)D, +a,+,D{ +2 + ...

=I(c,-I)D{ ,-D{I:)ID,I·

(1.15)

(I made use of the facts that sgnDk=(-I)k and -Dk=ak~2Dk!1 +

a k + 4 D k + J + ... , k = 0, I, ....
From (1.13) it follows that

(1.16)

Since (1.7) implies

Lemma 4 is proved.

In Lemmas 4',5, and 6, I (:)2) and N are as in Lemma 4.

LEMMA 4'. c, can only be 0 or 1.

Namely, if c, were :)2, then (1.15) would yield

LEMMA 5. Denote, for any interval I ~ (0, I),

/.'~l\'

I 'oil E I
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(Here 1yf denotes the fractional part ofy.) lfthe length of such an 1 is ID11,
then for n > IDII- J

,

( 1.17)

Proof See Hecke 121.

LEMMA 6. For m ~ ~B {j [, the natural numbers vfor which

I
II vt II < 2N"

are of the form

(1.18)

k = 1. 2,.... ( 1.19)

Proof The proof follows immediately from (1.14) with m = v.

2. THE CONSTRUCTION

I carry out the construction under assumption (3) instead of (3'), where A
can be arbitrarily large. The passage to the general case (3') is obvious.

Denote e(t) = exp(2nit) and by gm(t) the (C,2)-mean of the mth partial
sum of the geometric series I + e(t) + e(2t) + ... , that is.

gm(t) = en; 2) [( (m ; 2) (I - e(t)) I - (m + I) e(t}( I - e(t))

+ e(2t)(1 - e«m + I )t)(1 .- e(t)) 1)).
It is known that, as m -> 00,

(2.1 )

gm(t) = O(m), uniformly in t,

2
= (1 - e(t))-I - --2 e(t)(1 - e(t))

m+

Further, the real and imaginary parts of

. I )
2 + 0 ( m 2 1\ t II J .•

(2.2 )

2
(I - e(t)) J - --2 e(t)(1 - e(t) 2)

m+
(2.3 )

are of bounded variation in every closed interval in which II til> 0 provided
m > mo(o) (0 E (O,~) arbitrary).
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Let A be a large integer and let 0 < k I < k 2 < .,. be integers satisfying

7

and (2.4 )

Let
Pnl <P1l 2 < ...

be the finite sequence of primes P satisfying

and

p == I (mod A)

(2.5 )

(2.6 )

(2.7)

(for all large n there are such p's by the Prime Number Theorem for
arithmetic progressions). For a fixed n, I write PI instead of Pnl' Set, for
c > O.

and

f(t) = \ ' fn(t)·
n~l

(2.8 )

(2.9)

Obviously f(t) is a lacunary trigonometric series with gaps of length at least
A. Since the sum of the squares of the coefficients converges, we have

(2.10)

Let 0 < 0 < ~. I show that the series (2.9) converges uniformly for II t II > o.
Let t E (0, I - 0) and let k' be the largest kn for which

(2.11 )

(If there is no such largest k n' we set k I = O. We may suppose that H til 1=- 0,
because otherwise the desired uniform convergence is evident.) Write

x·,

f(t) = \' 1. (t) = \' + \' = \ ' + \ '.-..n _

n J kn<,k' kn>k' I 2

(2.12 )

First, estimate ILl I from above. We have, because of (2.7), for any large n
with k ll <k' and all I,

(2.13 )
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Because of the bounded variation of the real and imaginary parts of the
function (2.3), we have, by partial summation, for k" ~ k'

(2.14 )

Therefore we only h;ve to estimate maxo~I' k
n

ILo';'I<I' l(elt)l, which, by
(2.4) and the inequality Ilk~tll > (2A) " does not exceed 4A. This gives

as 11 --4 00. (2.15 )

For L2 we have, for large n,

(2.16 )

which is a consequence of (2.4). In order to finish the proof of uniform
convergence, I show that

\' (2.17 )

If t is rational. t = alb, (a. b) = I, then gk (PIt) < lib with at most one
n

exception and there is nothing to prove. Therefore we may suppose that t is
irrational. We have

='\"1','\'''.-t\'igk,,(Ptt)! =
k"I'/<4k" III/til,;, 1/40k" :p/II 1/40k"

Due to Lemma 1, L:' contains at most one summand; therefore

I
'\" ;
_ I <kll' (2.18)

Let

(2.19 )

Then

where I" is the interval
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Each of these intervals contains at most 2D m k n elements of the sequence
1Pin (because of Lemma 5). Therefore

(2.20)

which proves that we need if B m + 1'::;; k n ; if B m + I> k n , then a similar
argument involving B m _ 1 instead of B m leads to our goal. Inequalities (2.18)
and (2.20) prove the uniform convergence of (2.9) in (15, 1 - 15). Thusf(t) is
bounded in each closed subinterval of (15, I - 15). Finally I show that

if q > 2 and e < eo(q).
By the completeness of L q(O, 1), it suffices to show that

.1

lim ( ISn(xW dx = 00,
" ....., cx.. ~ 0

(2.21 )

(2.22)

where sn(x) =fl(x) +f2(X) + ... +fn(x). Set en = elk,~3. Then, for Ilxll < en'
we have, for a suitable e I.

\' L

or, after some simple calculations applying the Prime Number Theorem for
arithmetic progressions,

ISn(x)1 > K . k'/2 2£

Therefore (2.4) yields

K being a constant.

.• 1

I ISn(x)lq dx > e'k n 3(k~3!21-2e)q K q
• 0

which tends to infinity if e is small enough. This completes the proof.
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