On Power Series with Gaps

P. Szüsz
Department of Mathematics, State University of New York, Stony Brook, New York 11794, U.S.A., and
Mathematisches Instiut A der Iniversität Stutgart.
Stuttgart. West Germany
Communicated by Oved Shisha

Received August 11, 1980: revised November 24, 1982

A theorem of Ingham refining one of Wiener $|8|$ states that if

$$
\begin{equation*}
f(z)=a_{0}+a_{1} z+\cdots \tag{1}
\end{equation*}
$$

is a power series with radius of convergence 1 ,

$$
\begin{equation*}
a_{k}=0 \quad \text { if } \quad k \neq k_{n} \tag{2}
\end{equation*}
$$

$k_{1}<k_{2}<\cdots$, being a sequence satisfying the inequality

$$
\begin{equation*}
k_{n+1}-k_{n} \geqslant A>1 \tag{3}
\end{equation*}
$$

and $f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1^{+}} f\left(r e^{i \theta}\right)$ exists a.e., then there is a positive constant $K=K(A)$ such that

$$
\begin{equation*}
\infty>\int_{I}\left|f\left(e^{i t}\right)\right|^{2} d t \geqslant K(A) \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{2} d t \tag{4}
\end{equation*}
$$

for every interval I of length $\geqslant 2 \pi / A$.
One could ask whether, in (4), the power 2 can be replaced by q s $\neq 2$. This problem was solved for $q>2$ in the negative in 1962 by Erdös and Rényi | 1 (cf. Zygmund [9, Vol. I, p. 380]).

Erdös and Renyi proved that for any $q>2$ there is a function $f(z)$ such that even a condition stronger than (3), namely,

$$
k_{n+1}-k_{n} \rightarrow \infty \quad(n \rightarrow \infty)
$$

is satisfied; furthermore,

$$
\begin{equation*}
f\left(e^{2 \pi i t}\right)=O(1), \quad \delta<t<1-\delta \quad\left(0<\delta<\frac{1}{2}\right) ; \tag{5}
\end{equation*}
$$

but

$$
\begin{equation*}
f\left(e^{2 \pi i t}\right) \notin L_{q}(0,1) \tag{6}
\end{equation*}
$$

The proof of this theorem is based on probability theory and gives no example of a function having the properties (2). (3'), (5), and (6). An example of such a function was essentially given by Turan |7|. However, his construction works only for $q>6$; further, property (5) is replaced by the weaker property

$$
f\left(e^{2 \pi i t}\right) \in L_{q}\left(\frac{1}{4}, \frac{3}{4}\right) .
$$

Later Knapowski $|4|$ modified Turan`s construction and replaced $q>6$ by $q>3$.

In Section 2 of the present paper I construct a function satisfying (2), (3^{\prime}), (5), and (6) for any given $q>2$.

1. Lemmas

Lemma 1. Let 1

$$
\begin{equation*}
0<t<1, \tag{1.1}
\end{equation*}
$$

let k_{1} and k_{2} be natural numbers satisfying

$$
\begin{gather*}
\frac{1}{k_{1}}<t<1-\frac{1}{k_{1}}, \quad \frac{1}{k_{2}}<t<1-\frac{1}{k_{2}} \tag{1.2}\\
\left(k_{1}, k_{2}\right)=1 \tag{1.3}
\end{gather*}
$$

and let

$$
\begin{equation*}
\left\|k_{1} t\right\|<\frac{1}{10 k_{1}}, \quad\left\|k_{2} t\right\|<\frac{1}{10 k_{2}} \tag{1.4}
\end{equation*}
$$

where $\|y\|$ denotes the distance of the real number y from a nearest integer.
Then if $k_{2}>k_{1}$, we have

$$
\begin{equation*}
\frac{k_{2}}{k_{1}}>5+\sqrt{24} \tag{1.5}
\end{equation*}
$$

so that (1.3) and (1.4) cannot happen simultaneously too frequently.

Proof. Equations (1.2)-(1.4) yield, with some integers d_{1} and d_{2}^{\prime},

$$
\begin{align*}
\frac{1}{k_{1} k_{2}} & \leqslant \frac{d_{1}}{k_{1}}-\frac{d_{2}}{k_{2}} \leqslant\left|\frac{d_{1}}{k_{1}}-t\right|+\left|t-\frac{d_{2}}{k_{2}}\right| \tag{1.6}\\
& <\frac{1}{10}\left(\frac{1}{k_{1}^{2}}+\frac{1}{k_{2}^{2}}\right) .
\end{align*}
$$

Set

$$
k_{2}=c k_{1}
$$

Then (1.6) implies

$$
\frac{1}{c}<\frac{1}{10}\left(1+\frac{1}{c^{2}}\right),
$$

i.e.,

$$
c^{2}-10 c+1>0
$$

which proves Lemma 1.
The following lemmas are from the theory of continued fractions. Let t be an irrational number, $0<t<1$, and let $\left|0 ; a_{1}, \ldots\right|$ be its continued fraction expansion. I use Perron's $|6|$ notation $A_{0}=0, B_{0}=1$; for $n=1,2 \ldots$,

$$
\begin{aligned}
\frac{A_{n}}{B_{n}} & =\left|0 ; a_{1}, \ldots, a_{n}\right| \quad\left(A_{n}>0, B_{n}>0,\left(A_{n}, B_{n}\right)=1\right) . \\
\zeta_{n} & =\left|a_{n} ; a_{n+1}, \ldots\right| ;
\end{aligned}
$$

and for $n=0,1,2, \ldots$,

$$
\begin{equation*}
D_{n}=B_{n} t-A_{n}=\frac{(-1)^{n}}{B_{n} \zeta_{n+1}+B_{n+1}} \quad\left(B_{-1}=0\right) \tag{1.7}
\end{equation*}
$$

Lemma 2 (Ostrowski $|5|$). Any integer $m \geqslant 0$ has a unique representation

$$
\begin{equation*}
m=\sum_{k=0}^{n} c_{k+1} B_{k} \tag{1.8}
\end{equation*}
$$

where the c_{k+1} are integers satisfying

$$
0 \leqslant c_{k+1} \leqslant a_{k+1}
$$

and

$$
c_{k+1}=a_{k+1} \Rightarrow c_{k}=0
$$

The proof is by induction.

Lemma 3. If $m \geqslant 1$ is an integer, then either

$$
\|m t\|>\|t\|
$$

or

$$
\begin{equation*}
\|m t\|=\left|{\underset{k}{n}}_{n}^{n} c_{k+1} D_{k}\right| . \tag{1.9}
\end{equation*}
$$

Proof. It suffices to show that either

$$
\left\|\hat{k}_{0}^{n} c_{k+1} D_{k}|>| t\right\|
$$

or

$$
\left|\sum_{k-0}^{n} c_{k+1} D_{k}\right|<\frac{1}{2}
$$

which, in turn, is an easy consequence of (1.7) and the well-known formulae of the theory of continued fractions

$$
\begin{equation*}
D_{n, 1}=a_{n, 1} D_{n}+D_{n-1} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{n+1}=-\frac{1}{\zeta_{n+2}} D_{n} \tag{1.11}
\end{equation*}
$$

see Perron $\mid 6$, pp. 4 and $36 \mid$.

Lemma 4. Let N be a natural number, let ε be a given positive number, and let t be a given positive irrational number with the continued fraction expansion $\left|0 ; a_{1} \cdots\right|$. Let l be the largest k with

$$
\begin{equation*}
B_{k} \leqslant N^{\varepsilon}, \tag{1.12}
\end{equation*}
$$

that is,

$$
B_{l} \leqslant N^{\varepsilon}<B_{l+1}
$$

and let m be a natural number satisfying

$$
\begin{equation*}
\|m t\| \leqslant \frac{1}{2} N^{-\varepsilon} \tag{1.13}
\end{equation*}
$$

If $l \geqslant 2$, then m has the form

$$
\begin{equation*}
m=c_{l} B_{l \ldots 1}+c_{l+1} B_{l}+\cdots \tag{1.14}
\end{equation*}
$$

In other words, in the representation (1.8),

$$
c_{1}=c_{2}=\cdots=c_{l-1}=0
$$

Proof. Let $1 \leqslant l^{\prime}<l$ and set $m^{\prime}=c_{l^{\prime}} B_{l^{\prime}-1}+\cdots$. We may assume $\left\|m^{\prime} t\right\| \leqslant\|t\|$. By (1.9) we have

$$
\begin{align*}
\left\|m^{\prime} t\right\| & =\left|c_{l^{\prime}} D_{l^{\prime}-1}+\cdots\right| \\
& >\mid c_{l^{\prime}} D_{l^{\prime}-1}+\left(a_{l^{\prime}+1}-1\right) D_{l}+a_{l^{\prime}+3} D_{l^{\prime+2}}+\cdots \tag{1.15}\\
& =\left|\left(c_{l^{\prime}}-1\right) D_{l^{\prime}-1}-D_{l^{\prime}}\right| \geqslant \mid D_{l^{\prime} \mid}
\end{align*}
$$

(I made use of the facts that $\operatorname{sgn} D_{k}=(-1)^{k}$ and $-D_{k}=a_{k+2} D_{k+1}+$ $a_{k+4} D_{k+3}+\cdots, k=0,1, \ldots$.

From (1.13) it follows that

$$
\begin{equation*}
\left\|m^{\prime} t\right\| \geqslant\left|D_{l}\right| \geqslant\left|D_{l-1}\right| \tag{1.16}
\end{equation*}
$$

Since (1.7) implies

$$
\left|D_{l-1}\right|=\frac{1}{B_{l-1} \zeta_{l}+B_{l-2}}>\frac{1}{B_{l}+B_{l-1}}>\frac{1}{2 B_{l}}>\frac{1}{2 N^{6}},
$$

Lemma 4 is proved.
In Lemmas $4^{\prime}, 5$, and $6, l(\geqslant 2)$ and N are as in Lemma 4.

Lemma $4^{\prime} . \quad c_{l}$ can only be 0 or 1.
Namely, if c_{i} were $\geqslant 2$, then (1.15) would yield

$$
\|m t\|>\left|D_{l-1}\right| .
$$

Lemma 5. Denote, for any interval $I \subseteq(0,1)$,

$$
A_{n}(t, I)=\sum_{\substack{v \leqslant N \\\{n t\} \in!}} 1
$$

(Here $\{y\}$ denotes the fractional part of y.) If the length of such an I is $\left|D_{l}\right|$, then for $n>\left|D_{l}\right|^{-1}$,

$$
\begin{equation*}
A_{n}(t, I) \leqslant 2\left|D_{i}\right| n . \tag{1.17}
\end{equation*}
$$

Proof. See Hecke |2|.
Lemma 6. For $m \leqslant \frac{1}{2} B_{l+1}$, the natural numbers v for which

$$
\begin{equation*}
\|v t\|<\frac{1}{2 N^{\varepsilon}} \tag{1.18}
\end{equation*}
$$

are of the form

$$
\begin{equation*}
v=k B_{1}, \quad k=1,2, \ldots \tag{1.19}
\end{equation*}
$$

Proof. The proof follows immediately from (1.14) with $m=v$.

2. The Construction

I carry out the construction under assumption (3) instead of (3'), where A can be arbitrarily large. The passage to the general case (3^{\prime}) is obvious.

Denote $e(t)=\exp (2 \pi i t)$ and by $g_{m}(t)$ the $(C, 2)$-mean of the m th partial sum of the geometric series $1+e(t)+e(2 t)+\cdots$, that is.

$$
\begin{align*}
g_{m}(t)= & \binom{m+2}{2}^{1}\left(\binom{m+2}{2}(1-e(t))^{-1}-(m+1) e(t)(1-e(t))^{-2}\right. \\
& \left.+e(2 t)\left(1-e((m+1) t)(1-e(t))^{3}\right)\right) \tag{2.1}
\end{align*}
$$

It is known that, as $m \rightarrow \infty$,

$$
\begin{align*}
g_{m}(t) & =O(m), \quad \text { uniformly in } t \\
& =(1-e(t))^{-1}-\frac{2}{m+2} e(t)(1-e(t))^{2}+O\left(\frac{1}{m^{2}\|t\|^{3}}\right) . \tag{2.2}
\end{align*}
$$

Further, the real and imaginary parts of

$$
\begin{equation*}
(1-e(t))^{-1}-\frac{2}{m+2} e(t)\left(1-e(t)^{-2}\right) \tag{2.3}
\end{equation*}
$$

are of bounded variation in every closed interval in which $\|t\|>\delta$ provided $m>m_{0}(\delta)\left(\delta \in\left(0, \frac{1}{2}\right)\right.$ arbitrary $)$.

Let A be a large integer and let $0<k_{1}<k_{2}<\cdots$ be integers satisfying

$$
\begin{equation*}
\left(A, k_{n}\right)=1 \quad \text { and } \quad k_{n+1}>k_{n}^{4} \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
p_{n 1}<p_{n_{2}}<\cdots \tag{2.5}
\end{equation*}
$$

be the finite sequence of primes p satisfying

$$
\begin{equation*}
k_{n}<p<4 k_{n} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
p \equiv 1(\bmod A) \tag{2.7}
\end{equation*}
$$

(for all large n there are such p 's by the Prime Number Theorem for arithmetic progressions). For a fixed n, I write p_{l} instead of $p_{n l}$. Set, for $\varepsilon>0$.

$$
\begin{equation*}
f_{n}(t)=k_{n}^{-3(1+\varepsilon) / 2} \sum_{k_{n}<p_{l}<4 k_{n}} e\left(k^{2} l t\right) g_{k_{n}}\left(p_{t} t\right) g_{\left|k_{n} / \lambda\right|}(A t) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t)=\varliminf_{n=1}^{\infty} f_{n}(t) \tag{2.9}
\end{equation*}
$$

Obviously $f(t)$ is a lacunary trigonometric series with gaps of length at least A. Since the sum of the squares of the coefficients converges, we have

$$
\begin{equation*}
f(t) \in L^{2}(0,1) \tag{2.10}
\end{equation*}
$$

Let $0<\delta<\frac{1}{2}$. I show that the series (2.9) converges uniformly for $\|t\|>\delta$. Let $t \in(\delta, \mathrm{l}-\delta)$ and let k^{\prime} be the largest k_{n} for which

$$
\begin{equation*}
\|A t\|<\delta\left(2 k_{n}^{3}\right)^{-1} \tag{2.11}
\end{equation*}
$$

(If there is no such largest k_{n}, we set $k^{\prime}=0$. We may suppose that $\mid A t \| \neq 0$, because otherwise the desired uniform convergence is evident.) Write

$$
\begin{equation*}
f(t)=\bigvee_{n=1}^{\infty} f_{n}(t)=\grave{k}_{k_{n} \leqslant k^{\prime}}+\underset{k_{n}>k^{\prime}}{\vdots}=\frac{\vdots}{\vdots}+\frac{\vdots}{2} \tag{2.12}
\end{equation*}
$$

First, estimate $\left|\sum_{1}\right|$ from above. We have, because of (2.7), for any large n with $k_{n} \leqslant k^{\prime}$ and all l,

$$
\begin{equation*}
\left\|p_{l} t\right\|=\left\|\left[\frac{p_{l}}{A}\right]\right\| A t\|+\| t\| \| \geqslant \frac{\delta}{2} . \tag{2.13}
\end{equation*}
$$

Because of the bounded variation of the real and imaginary parts of the function (2.3), we have, by partial summation, for $k_{n} \leqslant k^{\prime}$

$$
\begin{equation*}
\left|f_{n}(t)\right|<\frac{2}{\delta} \frac{k_{n}}{A} \max _{0 \leqslant \leqslant \leqslant k_{n}}\left|\grave{y}_{0 \leqslant 1 \leqslant:} e\left(k^{2} l t\right)\right| . \tag{2.14}
\end{equation*}
$$

Therefore we only have to estimate $\max _{0-r-k_{n}}\left|\sum_{0 \leqslant l \leqslant r} l\left(k^{2} l t\right)\right|$, which, by (2.4) and the inequality $\left\|k_{n}^{2} t\right\|>(2 A)^{1}$, does not exceed $4 A$. This gives

$$
\begin{equation*}
|\underset{⿺}{\mathbf{~}}|=\frac{A}{\delta} O\left(\underset{k_{n} \leqslant k^{\prime}}{k_{n}^{1 / 2}}\right) \quad \text { as } \quad n \rightarrow \infty \tag{2.15}
\end{equation*}
$$

For \sum_{2} we have, for large n,

$$
\begin{equation*}
\left|\frac{\searrow}{2}\right| \leqslant \frac{\vdots}{k_{n}^{3}>(\delta / 2)} \frac{k_{n}^{t / 2}}{k_{n}^{3 / 2}} \frac{\vdots}{k_{n} \cdot p_{i} \odot+k_{n}}\left|g_{k_{n}}(p, t)\right| \tag{2.16}
\end{equation*}
$$

which is a consequence of (2.4). In order to finish the proof of uniform convergence, I show that

$$
\begin{equation*}
\sum_{k_{n}<\overline{p_{1}<4 k_{n}}}\left|g_{k_{n}}\left(p_{1} t\right)\right|=O\left(k_{n}\right) \tag{2.17}
\end{equation*}
$$

If t is rational, $t=a / b,(a, b)=1$, then $g_{k_{n}}\left(p_{l} t\right)<1 / b$ with at most one exception and there is nothing to prove. Therefore we may suppose that t is irrational. We have

Due to Lemma 1, \sum^{\prime} contains at most one summand; therefore

$$
\begin{equation*}
\left|\grave{\prime}^{\prime \prime}\right|<k_{n} . \tag{2.18}
\end{equation*}
$$

Let

$$
\begin{equation*}
B_{m} \leqslant k_{n}<B_{m+1}(m \geqslant 0) . \tag{2.19}
\end{equation*}
$$

Then

$$
\Sigma^{\prime \prime} \leqslant \sum_{0 \leqslant \mu \leqslant\left|D_{m}\right|-1} \sum_{\left(p_{t} t \mid \in I_{\mu}\right.}\left|g_{k_{n}}\left(p_{l} t\right)\right| \text {. }
$$

where I_{μ} is the interval

$$
\left(\left(40 k_{n}\right)^{-1}+\mu\left|D_{m}\right|,\left(40 k_{n}\right)^{-1}+(\mu+I)\left|D_{m}\right|\right)
$$

Each of these intervals contains at most $2 D_{m} k_{n}$ elements of the sequence $\left\{p_{l} t\right\}$ (because of Lemma 5). Therefore

$$
\begin{equation*}
\left|\beth^{\prime \prime}\right|<k_{n}\left|D_{m}\right| \frac{1}{\left|D_{m}\right|}\left(1+\frac{1}{2}+\cdots+\left|\left|D_{m}\right|^{-1}\right|\right) \tag{2.20}
\end{equation*}
$$

which proves that we need if $B_{m+1} \leqslant k_{n}$; if $B_{m+1}>k_{n}$, then a similar argument involving B_{m-1} instead of B_{m} leads to our goal. Inequalities (2.18) and (2.20) prove the uniform convergence of (2.9) in $(\delta, 1-\delta)$. Thus $f(t)$ is bounded in each closed subinterval of $(\delta, 1-\delta)$. Finally I show that

$$
\begin{equation*}
f \notin L^{q}(0,1) \tag{2.21}
\end{equation*}
$$

if $q>2$ and $\varepsilon<\varepsilon_{0}(q)$.
By the completeness of $L^{q}(0,1)$, it suffices to show that

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \int_{0}^{1}\left|s_{n}(x)\right|^{4} d x=\infty \tag{2.22}
\end{equation*}
$$

where $s_{n}(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)$. Set $\theta_{n}=\varepsilon^{\prime} k_{n}^{-3}$. Then, for $\|x\|<\theta_{n}$, we have, for a suitable ε^{\prime}.

$$
f_{r}(x)=(1+O(1)) k_{r}^{-3(1+\varepsilon) / 2} k_{r}^{2} A^{-1} \sum_{k_{r}<p_{r l}<4 k_{r}} 1 .
$$

or, after some simple calculations applying the Prime Number Theorem for arithmetic progressions,

$$
\left|s_{n}(x)\right|>K \cdot k^{3 / 2-2 \varepsilon}, \quad K \text { being a constant. }
$$

Therefore (2.4) yields

$$
\int_{0}^{1}\left|s_{n}(x)\right|^{q} d x>\varepsilon^{\prime} k_{n}^{3}\left(k_{n}^{(3 / 2)-2 \varepsilon}\right)^{q} K^{q}
$$

which tends to infinity if ε is small enough. This completes the proof.

Acknowledgment

[^0]
References

1. P. Erdös and A. Rényi, On a problem of A. Zygmund, in "Studies in Mathematical Analysis and Related Topics," Essays in Honor of George Polya, pp, 110-116. Stanford. 1962.
2. E. Hecke, Über Analytische Funktionen und Die Verteilung Der Zahlen Mod Eins. Hamb. Abh. 1 (1922), 102-106.
3. A. E. Ingham, Some trigonometric inequalities with applications to the theory of series. Math. Z. 41 (1936), 367-379.
4. S. Knapowski, On power series with small gaps. J. London Math. Soc. 39 (1964). 489-494.
5. A. Ostrowskı, "Mathematische Miszellen: Notiz zur Theorie der Diophantischen Approx imation, Jahresber. Deutsch. Math.-Verein 36 (1927). 178-180.
6. O. Perron. Die Lehre von den Ketterebruchen. I. 3rd ed., Stuttgart. 1454.
7. P. Turani, On a certain problem in the theory of power series with gaps, in "Studies in Mathematical Analysis and Related Topics." Essays in Honor of George Polya, pp. 404-409, Stanford, 1962.
8. N. Wiener. A class of gap theorems. Ann. Pisa 3 (1934), 367-372.
9. A. Zygmund, "Trigonometric Series," Cambridge Univ. Press, London New York. 1959.

[^0]: I would like to express my gratitude to Professor Oved Shisha for helping me to write the present paper and eliminate several errors.

